Math 115
Summer 2017
Lecture 13

Factoring: GO
\rightarrow order

$$
\begin{aligned}
24 x^{3}-16 x^{2} & =8 x^{2} \cdot 3 x-8 x^{2} \cdot 2 \\
& =\underbrace{8 x^{2}}_{G C F}(3 x-2) \\
75 x^{4} y^{2}-15 x^{3} y^{3} & =15 \cdot 5 \cdot x^{3} \cdot x \cdot y^{2}-15 \cdot x^{3} \cdot y^{2} \cdot y \\
& =\underbrace{15 x^{3} y^{2}}_{G C F}(5 x-y)
\end{aligned}
$$

factor out the GCF:
1)

$$
\begin{aligned}
& 25 x^{3}-10 x^{2}+5 x \\
& =5 x\left(5 x^{2}-2 x+1\right)
\end{aligned}
$$

2)

$$
\begin{aligned}
& 4 x^{2}(2 x-3)-7 x(2 x-3)+5(2 x-3) \\
& =(2 x-3)\left(4 x^{2}-7 x+5\right)
\end{aligned}
$$

3)

$$
\begin{aligned}
& 49 x^{2} y^{6}-14 x^{6} y^{2} \\
= & 7 x^{2} y^{2}\left(7 y^{4}-2 x^{4}\right)
\end{aligned}
$$

Factor by Grouping (use it when 4 terms or move)

$$
\begin{aligned}
& \underbrace{5 x^{3}-3 x^{2}+10 x-6} \\
= & x^{2}(5 x-3)+2(5 x-3) \\
= & (5 x-3)\left(x^{2}+2\right) \\
= & x^{3}+9 x^{2}-21 x-27 \\
= & x^{2}(7 x+9)-3(7 x+9) \\
= & (7 x+9)\left(x^{2}-3\right)
\end{aligned}
$$

Factor

1) $18 x^{2}-27 x=9 x(2 x-3)$

$$
\text { 2) } \left.\left.\begin{array}{rl}
& 5 x^{3} y^{2}-4 x^{2} y^{2}-10 x y^{2}+8 y^{2} \\
= & y^{2}(\underbrace{5 x^{3}-4 x^{2}}-10 x+8
\end{array}\right)\right]
$$

Factoring Trinomials: $a x^{2}+b x+C$

$$
\begin{aligned}
& \begin{array}{l}
x_{10}^{x^{2}+7 x+10=} \begin{array}{l}
x^{2}+2 x+\underbrace{5 x+10} \\
S=7
\end{array}=x(x+2)+5(x+2) \\
2,5=(x+2)(x+5)
\end{array} \\
& \begin{aligned}
& \begin{array}{l}
x^{2}-9 x+14 \\
P=14 \\
S
\end{array}=-9=-14-14 \\
&-2,-7
\end{aligned}=\begin{aligned}
x^{2}-7 x & -2 x+14 \\
& =(x-7)-2(x-7)(x-2)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 6 x^{4}-20 x^{3}-26 x^{2} \\
&= 2 x^{2}\left(3 x^{2}-10 x-13\right) \\
& P=-39 \\
& S=-10 \\
&= 2 x^{2}(\underbrace{3 x^{2}+3 x}_{3 x(x+1)}-13(x+1) \\
&==2 x^{2}(x+1)(3 x-13)
\end{aligned}
$$

A rectangar garden has an area of $30 \mathrm{ft}^{2}$.
The length is 7 ft longer than its width.

1) Draw is label such garden.
$A=30$
$x+7$
x
2) find an expression for its area.

$$
\begin{aligned}
A & =L W & & x^{2}+7 x=30 \\
& =(x+7) x=x^{2}+7 x & & \frac{x^{2}+7 x-30=0}{7}
\end{aligned}
$$

3) find an equ in the form of $a x^{2}+b x+c=0$.

The length of a rectangular Pool is 3 m shorter than twice its width.
(1) Draw er label

(2) find an expression for its area.

$$
\begin{aligned}
L W & =(2 x-3) x \\
& =2 x^{2}-3 x
\end{aligned}
$$

(3) Write an equation for the area of this rectangle in the form of $a x^{2}+b x+c=0$ if area of the pool is $54 \mathrm{~m}^{2} . \quad 2 x^{2}-3 x=54$

$$
2 x^{2}-3 x-54=0
$$

Factor Completely:

$$
\begin{aligned}
& \text { (1) } 10 x-15 \\
& =5(2 x-3)
\end{aligned}
$$

(3) $2 x^{2}-3 x-54$

$$
\begin{array}{ll}
P=-108 \\
S=-3
\end{array}<-108 \quad \begin{aligned}
& 1,108 \\
& 2,54
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
& 5 x^{3}+7 x^{2} \\
= & x^{2}(5 x+7)+1(5 x+7) \\
= & (5 x+7)\left(x^{2}+1\right)
\end{aligned}\left\{\begin{array} { l l l }
{ 5 = - 3 } & { - 1 0 8 } & { 2 , 5 4 } \\
{ 2 x ^ { 2 } + 9 x - 1 2 x - 5 4 } \\
{ = x (2 x + 9) - 6 (2 x + 9) } & { 3 , 3 6 } \\
{ 4 , 2 7 } \\
{ 4 , 1 8 } \\
{ 6 , 1 2 x + 9) (x - 6) }
\end{array} \left\{\begin{array}{l}
9,-12
\end{array}\right.\right.
$$

Special Factoring with Binomials:

$$
\begin{aligned}
& A^{2}+B^{2}=\text { Prime } \\
& A^{2}-B^{2}=(A+B)(A-B) \\
& A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \\
& A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
\end{aligned}
$$

Factor:

1) $x^{2}+9=x^{2}+3^{2}=$ Prime
2) $x^{2}-9=x^{2}-3^{2}=(x+3)(x-3)$
3) $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
4)

$$
\begin{aligned}
x^{3}+64 & =x^{3}+4^{3} \\
& =(x+4)\left(x^{2}-4 x+16\right)
\end{aligned}
$$

5)

$$
\begin{aligned}
x^{3}-64 & =x^{3}-4^{3} \\
& =(x-4)\left(x^{2}+4 x+16\right)
\end{aligned}
$$

6) $x^{3}-49 x=x\left(x^{2}-49\right)=x(x+7)(x-7)$

$$
\text { 7) } \begin{aligned}
2 x^{4}-54 x & =2 x\left(x^{3}-27\right) \\
& =2 x\left(x^{3}-3^{3}\right)
\end{aligned}
$$

8) $3 x^{5} y+3000 x^{2} y=2 x(x-3)\left(x^{2}+3 x+9\right)$

$$
\begin{aligned}
& =3 x^{2} y\left[x^{3}+1000\right] \\
& =3 x^{2} y\left[x^{3}+10^{3}\right] \\
& =3 x^{2} y(x+10)\left(x^{2}-10 x+100\right)
\end{aligned}
$$

Factor Completely:
1)

$$
\begin{aligned}
25 x^{3}-49 x & =x\left(25 x^{2}-49\right) \\
& =x(5 x+7)(5 x-7)
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
& 250 x^{4} y-54 x y^{4} \\
= & 2 x y\left(125 x^{3}-27 y^{3}\right) \\
= & 2 x y\left[(5 x)^{3}-(3 y)^{3}\right]=2 x y(5 x-3 y)\left(25 x^{2}+15 x y+7 y^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}\left(x^{2}-5 x-24\right)-100\left(x^{2}-5 x-24\right) \\
& =\left(x^{2}-5 x-24\right)\left(x^{2}-100\right) \\
& =(x+3)(x-8)(x+10)(x-10) \\
& x^{2}\left(x^{2}+6 x+9\right)+6 x\left(x^{2}+6 x+9\right)+9\left(x^{2}+6 x+9\right) \\
& =\left(x^{2}+6 x+9\right)\left(x^{2}+6 x+9\right)=(x+3)(x+3)(x+3)(x+3) \\
& =(x+3)^{4}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x\left(8 x^{3}+125\right)+5\left(8 x^{3}+125\right) \\
= & (\underbrace{8 x^{3}}+\underbrace{125})(2 x+5) \\
& (2 x)^{3}+5^{3} \\
= & (2 x+5)\left(4 x^{2}-10 x+25\right)(2 x+5) \\
= & (2 x+5)^{2}\left(4 x^{2}-10 x+25\right)
\end{aligned}
$$

Divide

$$
\begin{array}{rr}
\frac{3 x^{2}-7 x+4}{3 x-4} & \\
=\frac{(3 x-4)(x-1)}{3 x-4} & 3 x-4 \sqrt{3 x^{2}-7 x+4} \\
=x-1 & \frac{-\left(3 x^{2}-4 x\right)}{-3 x+4} \\
=x-1 & \frac{-(3 x+4)}{0}
\end{array}
$$

Divide

$$
\begin{aligned}
& \text { Divide } \\
& \begin{array}{l}
\frac{8 x^{3}+125}{2 x+5}
\end{array} 2 x+5 \sqrt{8 x^{3}+0 x^{2}+0 x+125} \\
& =\frac{(2 x+5)\left(4 x^{2}-10 x+25\right)}{2 x+3} \\
& =4 x^{2 x+25} \\
& =4-\frac{\left(8 x^{3}+20 x^{2}\right.}{-20 x^{2}+0 x+125} \\
& \frac{-\left(20 x^{2}-50 x\right)}{50 x+125}
\end{aligned}
$$

The sum of Squares of two Cons. integers is 10. Write an eqn in the form of $a x^{2}+b x+c=0$ using these information.

$$
\begin{aligned}
& x^{2}+(x+1)^{2}=10 \\
& x \dot{\varepsilon}_{1}^{x} x+1 \\
& x^{2} \dot{\varepsilon}_{1}(x+1)^{2} \\
& x^{2}+(x+1)(x+1)=10 \\
& x^{2}+x^{2}+2 x+1=10 \\
& 2 x^{2}+2 x+1-10=0 \\
& P=-18 \\
& S=2 \\
& 2 x^{2}+2 x-9=0 \\
& -18 \\
& \rightarrow \text { factor the } \\
& -2,9 \\
& -3,6
\end{aligned}
$$

The Sum of squares of two Cons. even integers is 20.
using these informations, write an eqn in

$$
\begin{array}{ll}
a x^{2}+b x+c=0 & x \text { 立 } x+2 \\
x^{2}+(x+2)^{2}=20 & x^{2} \dot{\varepsilon}_{1}(x+2)^{2} \\
x^{2}+(x+2)(x+2)=20 & \\
x^{2}+x^{2}+4 x+4=20 & \longrightarrow 2 x^{2}+4 x-16=0
\end{array}
$$

Due tomorrow at 6:00: SG15
Quiz later today
Perfect-Sguane Trinomials Factoring

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2} \\
& x^{2}+16 x+64=(x+8)^{2} \\
& x^{2}-24 x+144=(x-12)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 9 x^{2}+30 x y+25 y^{2}=(3 x+5 y)^{2} \\
& 36 x^{2}-84 x y+49 y^{2}=(6 x-7 y)^{2} \\
& 18 x^{3}+60 x^{2} y^{2}+200 x y^{4} \\
& =\frac{2 x\left(9 x^{2}+30 y^{2}+100 y^{4}\right)}{}=2 x\left(3 x-10 y^{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 49 x^{2}-70 x+25=(7 x-5)^{2} \\
& 625 x^{4}-100 x^{2}+4 \\
& =\left(25 x^{2}-2\right)^{2}
\end{aligned}
$$

Divide $\frac{x^{4}-13 x^{2}+36}{x^{2}+5 x+6}$

$$
\begin{array}{r}
x^{2}+5 x+6 \sqrt{x^{2}-5 x+6} \\
\frac{x^{4}+0 x^{3}-13 x^{2}+0 x+36}{-\left(x^{4}+5 x^{3}+6 x^{2}\right)} \\
\left.x^{2}-5 x+6 x^{3}-19 x^{2}+0 x+36\right) \\
\frac{-\left(-5 x^{3}-25 x^{2}-30 x\right)}{6 x^{2}+30 x+36} \\
\frac{-\left(6 x^{2}+30 x+36\right)}{0}
\end{array}
$$

Looking Ahead:
If $x^{2}=k, k \geq 0$, then $x= \pm \sqrt{k}$
Squave-Root Method
Solve $x^{2}=36$ by S.R.M. $x= \pm \sqrt{36}$
Solve $(x-1)^{2}=25$ by S.R.M.

$$
\begin{gathered}
x-1= \pm \sqrt{25} \\
x-1= \pm 5
\end{gathered} \leftrightarrow x=1 \pm 5 \quad x_{x=6}^{x=-4} \quad\{6,-4\}
$$

Solve $(2 x+3)^{2}=49$ by S.R.M.

$$
\left.\left.\begin{array}{l}
1(2 x+3)= \pm \sqrt{49} \\
2 x+3= \pm 7 \\
2 x=-3 \pm 7 \\
x=\frac{-3 \pm 7}{2}
\end{array}\right\} \begin{array}{l}
x=\frac{-3-7}{2}=\frac{-10}{2}=-\frac{4}{2}=2 \\
\{-5,2
\end{array}\right\}
$$

Making a Perfect square

$$
\begin{aligned}
& x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2} \\
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}-18 x+81=(x-9)^{2} \\
& x^{2}+7 x+\frac{49}{4}=\left(x+\frac{7}{2}\right)^{2} \\
& x^{2}-11 x+\frac{121}{4}=\left(x-\frac{11}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
x^{2}+\frac{1}{5} x+\frac{1}{100}=\left(x+\frac{1}{10}\right)^{2} \\
\frac{1}{2} \cdot \frac{1}{5}=\frac{1}{10} \\
x^{2}-\frac{3}{4} x+\frac{9}{64}=\left(x-\frac{3}{8}\right)^{2} \\
\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{8} \\
x^{2}+\frac{2}{7} x+\frac{1}{49}=\left(x+\frac{1}{7}\right)^{2} \\
\frac{1}{2} \cdot \frac{2}{7}=\frac{1}{7}
\end{gathered}
$$

Solving $x^{2}+b x+c=0$ by
completing the square method:

$$
\begin{aligned}
& x^{2}-6 x+8=0 \\
& x^{2}-6 x+9=-8+9 \\
& (x-3)^{2}=1 \quad\left[\begin{array}{l}
x-3= \pm 1 \\
x=3 \pm 1
\end{array}\right. \\
& \text { use S.R.M. } \\
& x=4, x=2 \\
& \{2,4\}
\end{aligned}
$$

Solve by Completing the Syr method:

$$
x^{2}+10 x+21=0
$$

Move the Constant term to RHS

$$
x^{2}+10 x+25=-21+25
$$

Make perfect-squave on the LHS

$$
\begin{aligned}
& (x+5)^{2}=4 \\
& \text { use S.R.M. } \\
& x+5= \pm \sqrt{4}
\end{aligned} \begin{aligned}
& x+5= \pm 2 \\
& x=-5 \pm 2 \\
& \begin{array}{l}
x=-3 \\
\{-7,-3\}
\end{array}
\end{aligned}
$$

Solve by Completing the square:

$$
\begin{aligned}
& x^{2}-3 x-10=0 \\
& x^{2}-3 x+\frac{9}{4}=10+\frac{9}{4} \\
& \frac{1}{2} \cdot 3=\frac{3}{2}\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}\left\{x-\frac{3}{2}= \pm \frac{7}{2}\right. \\
& x=\frac{3}{2} \pm \frac{7}{2} \\
& \text { by S.R.M. } \\
& x-\frac{3}{2}= \pm \sqrt{\frac{49}{4}} \underset{x=5}{x=-2} \begin{array}{l}
x=5\}
\end{array}
\end{aligned}
$$

Solving $a x^{2}+b x+c=0$ by Quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0$

$$
\begin{aligned}
& 2 x^{2}-3 x-5=0 \\
& \begin{aligned}
& a=2, \quad b=-3, \quad c=-5 \quad b^{2}-4 a c=(-3)^{2}-4(2)(-5) \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-3) \pm \sqrt{49}}{2(2)} \\
&=\frac{3 \pm 7}{4},
\end{aligned} \quad x=\frac{3+7}{4}=\frac{10}{4}=\frac{5}{2} \\
& \left\{-1, \frac{5}{2}\right\}
\end{aligned} \quad \begin{aligned}
& x=\frac{-4}{4}=-1
\end{aligned}
$$

Factor Comp.:

1) $24 x-9 x y$
2) $2 x^{3}+3 x^{2}+4 x+6$
3) $4 x^{2}-x-5$
